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Abstract. We find WKB expansions for the spectra of the three-dimensional isotropic harmonic
oscillator and Eckart and Morse potentials. It is shown that for all these potentials the series are
convergent and, when summed, yield the exact energy spectra. These results support our working
hypothesis that the WKB series for the energy spectra are convergent for all one-dimensional
solvable potentials and their sums yield the exact energies.

1. Introduction

In this paper we consider the eigenvalue problem for the one-dimensional Schrödinger equation
for the list of potentials examined by Rosenzweig and Krieger (1968). Using the method
of Fröman and Fröman (1965) they found the exact quantization conditions and energy
eigenvalues for the linear and three-dimensional isotropic harmonic oscillators and Coulomb,
Pöschl–Teller, Eckart and Morse potentials.

The general exact quantization condition for the one-dimensional Schrödinger equation[
− h̄2

2m

d2

dx2
+ V (x)

]
ψ(r) = Eψ(r) (1)

obtained by Fröman and Fröman (1965) is∫ x ′′

x ′
|q(x)| dx =

(
n +

1

2

)
π − arg

F22(z,+∞)

F22(z,−∞)
(2)

where q(z) and F22 are some functions which need to be determined. Rosenzweig and Krieger
(1968) showed that for the potentials mentioned above the functions q(x) can be chosen such
that arg F22(z,+∞)

F22(z,−∞)
= 0 and, therefore, the quantization condition has the simple form∫ x ′′

x ′
|q(x)| dx = (n + 1

2 )π. (3)

We will show that the energy eigenvalues for all these potentials can be derived using the
standard WKB series.

Let us write the wavefunction as

ψ(x) = exp

{
i

h̄
σ (x)

}
(4)
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where

σ(x) =
∞∑
k=0

(
h̄

i

)k
σk(x). (5)

If we assume that the potential V (x) is a single-valued analytic function which is real on
the real axis, that V (±∞) = ∞, that V (x) has a unique minimum on the real axis, that V (x)
rises monotonically on both sides of the minimum and for k > 1 the integrals∫ a

−∞
|σ ′
k(x)| dx

∫ +∞

b

|σ ′
k(x)| dx (6)

are convergent, when a < x1, b > x2, where x1 < x2 are the turning points, then, as proven
by Fedoryuk (1993), the following asymptotic expansion takes place:

∞∑
k=0

(
h̄

i

)k ∮
γ

σ ′
k(x) dx = 2πnh̄ (7)

where n � 0 is an integer number and γ is a contour surrounding the turning points on the real
axis (this formula appears for the first time, apparently, in the work of Dunham (1932)). This
relation is an equation with respect to E and using it one can find the asymptotic expansion of
the eigenvalues En(h̄). However, it turns out that in some cases the series (8) can be summed
exactly (see e.g. Bender et al 1977, Robnik and Salasnich 1997a, b, Salasnich and Sattin
1997, Romanovski and Robnik 1999) and it allows us to find not only asymptotic, but exact,
eigenvalues for the corresponding potentials. In this paper we will show that this is true for all
potentials from the list of Rosenzweig and Krieger (1968). For Coulomb and Pöschl–Teller
potentials and for the angular momentum, this was shown in the above-mentioned papers.
In this paper we consider the three-dimensional isotropic harmonic oscillator and Eckart and
Morse potentials. This paper is a continuation of our previous work (Robnik and Romanovski
2000), in which we studied some general properties of the WKB series, and here we use similar
methods. Our motivation and our results, past and present, support our working hypothesis,
namely, that the WKB series for a one-dimensional potential converges and gives an exact
result for the eigenenergies when the potential is an exactly solvable one. We have no proof
of this conjecture so far, but consider it as very important, also in studying potentials that are
slightly perturbed from the solvable one.

Note that as shown by Fröman (1966) the odd-order coefficients σ ′
2k+1 are total derivatives.

Therefore, we can write the formula (7) in the form
∞∑
k=0

(
h̄

i

)2k ∮
γ

σ ′
2k(x) dx = 2π

(
n +

1

2

)
h̄. (8)

For the harmonic oscillator and the Morse potential the integrals
∮
γ
σ ′

2k are equal to zero for
all k � 1 and, hence, as is well known, the Bohr–Sommerfeld quantization rule is exact in
these cases. However, for other potentials the series (8) contains infinitely many terms, and
the Bohr–Sommerfeld quantization rule gives us only an approximation of the energy spectra.

Another interesting and important case is the Coulomb potential, which we have solved
(Romanovsky and Robnik 1999) using the WKB method. Also, it has been shown by Hainz
and Grabert (1999) that a modified WKB series for the Coulomb potential yields the series (8)
with only the first two terms different from zero.

2. The Eckart potential

The phase σ(x) is a complex function that satisfies the differential equation

σ ′2(x) + h̄σ ′′(x) = (V (x)− E)
def= Q(x). (9)
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Substituting (5) into (9) and comparing like powers of h̄ gives the recursion relation

σ ′2
0 = 2m(E − V (x))

n∑
k=0

σ ′
kσ

′
n−k + σ ′′

n−1 = 0. (10)

We shall denote by σ ′
k(x) real functions and by σ ′

k(z) their continuations on the complex plane.
Consider the potential

V (x) = −λe−αx

1 − e−αx +
be−αx

(1 − e−αx)2
(11)

(where 0 < x < ∞, α, λ, b > 0 and such that there is a potential well), which sometimes is
called the Eckart potential (Eckart 1930, Bose 1964).

Let us denote

c = 2mE f = 2mb g = 2mλ u = eαx − 1. (12)

We cut the complex plane u between the turning points u1 and u2 where 0 < u1 < u2, and
choose the single-valued branch of the square root, which is negative for large positive u,

h(u) = −
√

−cu2 + (f − g)u + f . (13)

Then

σ ′
0(u) = i

u
h(u) (14)

and

σ ′
1 = − α(1 + u)((f − g)u + 2f )

4u
√
c u2 + (g − f ) u− f

2 . (15)

We shall show that the coefficients σ ′
k of the WKB expansion have the following general

form:

σ ′
2s = (u + 1)P6s−2(u)

u
√
c u2 + (g − f ) u− f

6s−1
(16)

and

σ ′
2s+1 = u(u + 1)Q6s−1(u)√

c u2 + (g − f ) u− f
6s+2

(17)

where s > 0, the degrees of polynomials Pk and Qk (as functions of u) are not greater than k
and P6s−2 has the form

P6s−2 = 1

22s

( 1
2

s

)
(f α)2s

(
1 +

[
3s

(
1 − g

f

)
− 1

]
u + · · ·

)
. (18)

Here and below we denote by Qk any polynomial of degree less than or equal to k.
We prove the formulae (16)–(18) by induction on s. It is easy to see that for s = 1 the

statements are true. Let us suppose that they are proven for all s < l and consider the case
s = l.

To compute σ ′
2l using the recurrence formula (10) we note that

σ ′
2k+1σ

′
2(l−k−1)+1

σ ′
0

= u4(u + 1)Q6l−7

u
√
c u2 + (g − f ) u− f

6l−1
(19)

σ ′
1σ

′
2(l−1)+1

σ ′
0

= u2(u + 1)Q6l−5

u
√
c u2 + (g − f ) u− f

6l−1
(20)
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and
σ ′′

2l−1

σ ′
0

= u2(u + 1)Q6l−4

u
√
c u2 + (g − f ) u− f

6l−1
. (21)

Thus we see that the fractions (19)–(21) have the form (16) and the polynomials in the
numerators have no influence on the two lowest terms of the numerator of σ ′

2l .
Therefore

σ ′
2l = −

l−1∑
k=1

σ ′
2kσ

′
2(l−k)

2σ ′
0

+
u2(u + 1)Q6l−4

u
√
c u2 + (g − f ) u− f

6l−1

= −
l−1∑
k=1

(u + 1)((u + 1)P6k−2P6(l−k)−2 + u2Q6l−4)

2u
√
c u2 + (g − f ) u− f

6l−1
. (22)

Note that the degree of the polynomials P6k−2P6(l−k)−2 is less than or equal to 6l − 4. Hence
it remains to compute the two lowest terms of the polynomial σ ′

2l . Observing now that

(u + 1)P6k−2P6(l−k)−2 = 1

22l
(f α)2l

( 1
2

k

)( 1
2

l − k

)(
1 +

[
3l

(
1 − g

f

)
− 1

]
u + · · ·

)
(23)

we obtain from (22)

σ ′
2l = − 1

22l+1
(f α)2l

1 + [3l(1 − g

f
)− 1]u + u2Q6l−4

u
√
c u2 + (g − f ) u− f

6l−1

l−1∑
k=1

( 1
2

k

)( 1
2

l − k

)
. (24)

Therefore, taking into account the Vandermonde convolution
l∑

k=0

( 1
2

k

)( 1
2

l − k

)
= 0 (25)

we see that formulae (16), (18) hold.
Direct calculations show that

−σ ′
1σ

′
2l

σ ′
0

− σ ′′
2l

2σ ′
0

σ ′
2kσ

′
2(l−k)+1

σ ′
0

(26)

have the form (17). That yields that σ ′
2l+1 has the form (17) as well.

Now we can compute the integrals in (8) using the residue calculus. Taking into account
the substitution u = eαz − 1 we obtain∮

dσ2k = 2π i

α

(
Res0

σ ′
2k

u + 1
+ Res−1

σ ′
2k

u + 1
+ Res∞

σ ′
2k

u + 1

)
(27)

where k � 0. Because the complex plane is cut between the points u1 and u2, where
0 < u1 < u2, and we have chosen the branch defined by (13), we have for u < u1

σ ′
0(u) = i

u

√
−cu2 + (f − g)u + f (28)

where the root is the arithmetical one.
Therefore ∮

γ

dσ0 = 2π
√

2m

(
−

√
b

α
−

√−E
α

+

√−E + λ

α

)
. (29)

In order to simplify the equations we choose our system of units such that h̄2/2m = 1.
Then for k � 1 the formulae (16), (18) and (27) yield(

h̄

i

)2k ∮
γ

dσ2k = −2πh̄

(
1

4

)k (√
b

α

)1−2k (
1/2

k

)
. (30)
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Therefore

−
∞∑
k=0

h̄

(
1

4

)k (√
b

α

)1−2k (
1/2

k

)
−

√−2Em

α
+

√
2m(−E + λ)

α
= h̄

(
n +

1

2

)
. (31)

This gives the condition for the energy eigenvalues

−
√−E
α

− 1

2

√
1 +

4b

α2
+

√−E + λ

α
=
(
n +

1

2

)
(32)

where

n �
√
λ

α
− 1

2
− 1

2

(
1 +

4b

α2

)1/2

. (33)

The obtained formula differs from the result by Rosenzweig and Krieger (1968), which
states that the energy eigenvalues are

E = −
((

1
2 + n + 1

2

√
1 + 4 b

α2

)
α − λ

)2

4 (1 + n +
√
b
α
)2 α2

(34)

where

n � λ

α
− 1

2
− 1

2

(
1 +

4b

α2

)1/2

. (35)

To confirm our formula we shall find the exact solution of the eigenvalue problem. After the
substitution y = e−αx we obtain

y2 u′′(y) + y u′(y) +

(
−A2 − B y

(1 − y)2
+
y β2

1 − y

)
u(y) = 0 (36)

where

A2 = −2mE

h̄2α2
β2 = 2mλ

h̄2α2
B = 2mb

h̄2α2
. (37)

The substitution

u(y) = (y − 1)
1+

√
1+4B
2 yA w(y) (38)

yields the hypergeometric equation

2(y − 1) y w′′(y) + 2
(
−1 − 2A +

(
2 + 2A +

√
1 + 4B

)
y
)
w′(y)

+
(

1 + 2A + 2B + (1 + 2A)
√

1 + 4B − 2 β2
)
w(y) = 0 (39)

whose general solution is

c y−2A
2F1(µ− 2A, θ − 2A, 1 − 2A, y) + d2F1(µ, θ, 1 + 2A, y) (40)

where

µ = 1

2
+ A +

√
1 + 4B

2
−
√
A2 + β2 θ = 1

2
+ A +

√
1 + 4B

2
+
√
A2 + β2 (41)

c and d are arbitrary constants and, as we see, θ > 0. We are interested in the solutions of the
boundary value problem

u(0) = 0 u(1) = 0. (42)
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The first of the equations (42) yields c = 0. Hence

u(y) = d (y − 1)
1+

√
1+4B
2 yA 2F1(µ, θ, 1 + 2A, y)

= d (y − 1)
1+

√
1+4B
2 yA

+(1 + 2A)+
(
−√

1 + 4B
)

+(1 + 2A− µ)+(1 + 2A− θ)

×2F1

(
µ, θ, 1 +

√
1 + 4B, 1 − y

)

+d̃ (y − 1)
1−√

1+4B
2 yA

+(1 + 2A)+
(√

1 + 4B
)

+(µ)+(θ)

× 2F1

(
1 + 2A− µ, 1 + 2A− θ, 1 −

√
1 + 4B, 1 − y

)
. (43)

When B > 0 the last term of the sum has a singularity when y → 1, except for the case when
µ is a non-positive integer.

Therefore the quantization condition is

−n− 1

2
= A +

√
1 + 4B

2
−
√
A2 + β2 (44)

(n = 0, 1, 2, . . .), that coincides with (32). The formula also holds in the case B = 0 when
the potential degenerates to the Hulthén potential (see, e.g., Flügge 1971).

3. The three-dimensional isotropic harmonic oscillator

Consider the three-dimensional isotropic harmonic oscillator with a degeneracy breaking term.
In this case we have the radial equation (1) with

V (x) = b h̄2

2mx2
+
h̄2 l (l + 1)

2mx2
+
k x2

2
(45)

and b, k,m, l > 0, 0 < x < ∞. Let us denote

c = [b + l(l + 1)]h̄2

2m
a = k

2
(46)

then the potential has the form

V (x) = c

x2
+ a x2. (47)

The first term of the WKB expansion is

σ ′
0 =

√
2

√
m

(
E − c

z2
− a z2

)
=

√
2

√
m

(
E − b h̄2

2mz2
− h̄2 l (l + 1)

2mz2
− k z2

2

)
= i

z

√
g(z)

(48)

where

g(z) = kmz4 − 2Emz2 + b h̄2 + h̄2 l (l + 1) (49)

and

σ ′
1 = c − a z4

2 c z− 2E z3 + 2 a z5
. (50)

Let x1 < x2 < 0 < x3 < x4 be the roots of the equation g(z) = 0; that is,

g(z) = km(z− x1)(z− x2)(z− x3)(z− x4). (51)



Exact WKB expansions for some potentials 8555

We cut the complex plane between the points x1, x2 and x3, x4 and find a single-valued branch
h(z) of the function

√
g(z), such that for a > x4 h(a) = −√

g(a) < 0. Then we have

h(z) =
∣∣∣√g(z)∣∣∣ eiϕ/2 (52)

where ϕ = -θ arg g(z) and θ is a curve connecting a and z. From (51) we obtain ϕ = ∑4
i=1 ϕi ,

where ϕi = -θ arg(z− xi). Therefore for x > x4 and x < x1 we obtain

h(x) = −
√
g(x) (53)

and when x2 < x < x3

h(x) =
√
g(x) (54)

with the square root being the arithmetical one.
Then (54) yields that for x2 < x < x3

σ ′
0 = i

x

√
g(x) (55)

and for x < x1 and x > x4 we have according to (53)

σ ′
0 = − i

x

√
g(x) = −ix

√
bh̄2 + h̄2l(l + 1)

x4
− 2mE

x2
+ km (56)

and, therefore, using the substitution z2 = u and residue of σ ′
0 at infinity and the origin, we

obtain ∮
γ

dσ0 = πE

√
m

k
− πh̄

√
b + l + l2. (57)

To compute the remaining terms of the series (8) one can show (similarly as for the Eckart
potential) that the coefficients of the WKB expansion have the following general form:

σ ′
2s = P4s(z

2)

zms−1/2
√
E z2 − c − a z46s−1

(58)

and

σ ′
2s+1 = zQ4s+1(z

2)
√
E z2 − c − a z46s+2

(59)

where s > 0, the degrees of polynomials Pk,Qk (as functions of z2) are not greater than k and
the polynomials P4s have the form

P4s =
√

2

23s

( 1
2

s

)
(c2s + · · ·). (60)

The procedure to prove formulae (58)–(60) is precisely analogous to our proof by induction
in section 2.

Hence, taking into account that∮
γ

dσ2s =
∮
γ

P4s(z
2)

zms−1/2
√
E z2 − c − a z46s−1

dz = 1

2

∮
γ

P4s(u)

ums−1/2
√
Eu− c − au26s−1

du (61)

we obtain, computing the residue at the origin and infinity,(
h̄

i

)2s ∮
γ

dσ2s = −πh̄(b + l + l2)
1
2 −s

(
1

4

)s ( 1
2

s

)
. (62)

This yields

E = h̄

√
k

m

(
2n + 1 +

(
1

4
+ b + l(l + 1)

)1/2
)
. (63)
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4. The Morse potential

We now consider the Morse potential

V (x) = Ae−2αx − Be−αx. (64)

In this case the formula (10) yields

σ ′
0 =

√
2m
√
E − Ae−2αx + Be−αx. (65)

We cut the complex plane along the real axis between the turning points x1, x2 (x1 < x2),
which are the roots of the equation

A

e2 α x
− B

eα x
− E = 0 (66)

and in such a case we obtain a single-valued function in the cutting plane. We choose the
branch such that −√−Ew2 + A− Bw is negative for large positive w.

It is easy to prove by induction that the coefficients σ ′
k have the following form:

σ ′
k = e−2kαxP2k−1(eαx)√

E − Ae−2αx + Be−αx3k−1 (67)

where k � 2; the degrees of polynomials P2k−1(u) (as functions of u = eαx) are not greater
than 2k − 1.

Now we can compute the integrals (8). After the substitution w = eαx we obtain∮
γ

dσk =
∮
γ

w−2kP2k−1(w)

αw

√
E − A

w2 + B
w

3k−1 dw =
∮
γ

wk−2P2k−1(w)

α
√
Ew2 − A + Bw

3k−1 dw. (68)

The only singularity for the function under the last integral is the infinity. However, it is easily
seen that for k � 2

Res∞
wk−2P2k−1(w)

α
√
Ew2 − A + Bw

3k−1 = 0. (69)

Hence ∮
γ

dσk = 0 (70)

for all such k and the quantization condition (8) has the form∮
γ

dσ0 =
√

2m

α

∮
γ

√
Ew2 − A + Bw

w2
dw = 2πh̄

(
n +

1

2

)
. (71)

Because

Res0σ
′
0 = − iB

√
m√

2Aα
Res∞σ ′

0 = i
√

2
√−Em
α

(72)

we obtain
B

√
m√

2Aα
−

√
2

√−Em
α

= h̄

(
n +

1

2

)
. (73)

From this equation we obtain the well known formula

E = −B

2

(√
B

2A
− h̄ (n + 1

2 ) α√
B m

)2

(74)

and

n � B

αh̄

√
m

2A
− 1

2
(75)

in accordance with Rosenzweig and Krieger (1968); for the special case B = 2A (see Flügge
1971).
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5. Conclusions

In summary, we have demonstrated that for some potentials the quantization condition (8)
yields convergent WKB series which give us the exact spectra. The methods for computing
these series are similar for all these potentials and consist of two steps: (i) first, we have to
find a general formula for the terms σ ′

k of the WKB expansions for the phase; (ii) second, we
evaluate the contour integrals using the residue calculus.

An important question arising in this connection is what the class of potentials is for which
the formula (8) yields the exact spectra. Our experience in this paper and the previous papers
by Bender et al (1977), Robnik and Salasnich (1997a, b), Romanovski and Robnik (1999) and
Salasnich and Sattin (1997) seems to confirm our working hypothesis that the WKB method
is exact in all cases of solvable one-dimensional potentials. This has now been confirmed at
least for all potentials on the list of Rosenzweig and Krieger (1968). Why exactly this is so
is an important unanswered question. Another important issue is the investigation of WKB
series for potentials near the solvable cases. This is subject of our future work.
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